2014年考研數學大綱:數學一
[摘要] 2014年碩士研究生入學統一考試數學考試大綱已發布,數學一考試科目:高等數學、線性代數、概率論與數理統計,大綱內容詳見本文。
概率論與數理統計
一、隨機事件和概率
考試內容
隨機事件與樣本空間 事件的關系與運算 完備事件組 概率的概念 概率的基本性質 古典型概率 幾何型概率 條件概率 概率的基本公式 事件的獨立性 獨立重復試驗
考試要求
1.了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算。
2.理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式,以及貝葉斯(Bayes)公式。
3.理解事件獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法。
二、隨機變量及其分布
考試內容
隨機變量 隨機變量分布函數的概念及其性質 離散型隨機變量的概率分布 連續型隨機變量的概率密度 常見隨機變量的分布 隨機變量函數的分布
考試要求
1.理解隨機變量的概念,理解分布函數的概念及性質,會計算與隨機變量相聯系的事件的概率。
2.理解離散型隨機變量及其概率分布的概念,掌握0-1分布、二項分布 、幾何分布、超幾何分布、泊松(Poisson)分布 及其應用。
3.了解泊松定理的結論和應用條件,會用泊松分布近似表示二項分布。
4.理解連續型隨機變量及其概率密度的概念,掌握均勻分布 、正態分布 、指數分布及其應用,其中參數為 的指數分布 的概率密度為5.會求隨機變量函數的分布。
三、多維隨機變量及其分布
考試內容
多維隨機變量及其分布 二維離散型隨機變量的概率分布、邊緣分布和條件分布 二維連續型隨機變量的概率密度、邊緣概率密度和條件密度 隨機變量的獨立性和不相關性 常用二維隨機變量的分布 兩個及兩個以上隨機變量簡單函數的分布
考試要求
1.理解多維隨機變量的概念,理解多維隨機變量的分布的概念和性質。 理解二維離散型隨機變量的概率分布、邊緣分布和條件分布,理解二維連續型隨機變量的概率密度、邊緣密度和條件密度,會求與二維隨機變量相關事件的概率。
2.理解隨機變量的獨立性及不相關性的概念,掌握隨機變量相互獨立的條件。
3.掌握二維均勻分布,了解二維正態分布 的概率密度,理解其中參數的概率意義。
4.會求兩個隨機變量簡單函數的分布,會求多個相互獨立隨機變量簡單函數的分布。
四、隨機變量的數字特征
考試內容
隨機變量的數學期望(均值)、方差、標準差及其性質 隨機變量函數的數學期望 矩、協方差、相關系數及其性質
考試要求
1.理解隨機變量數字特征(數學期望、方差、標準差、矩、協方差、相關系數)的概念,會運用數字特征的基本性質,并掌握常用分布的數字特征。
2.會求隨機變量函數的數學期望。
五、大數定律和中心極限定理
考試內容
切比雪夫(Chebyshev)不等式 切比雪夫大數定律 伯努利(Bernoulli)大數定律 辛欽(Khinchine)大數定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列維-林德伯格(Levy-Lindberg)定理
考試要求
1.了解切比雪夫不等式。
2.了解切比雪夫大數定律、伯努利大數定律和辛欽大數定律(獨立同分布隨機變量序列的大數定律)。
3.了解棣莫弗-拉普拉斯定理(二項分布以正態分布為極限分布)和列維-林德伯格定理(獨立同分布隨機變量序列的中心極限定理)。
六、數理統計的基本概念
考試內容
總體 個體 簡單隨機樣本 統計量 樣本均值 樣本方差和樣本矩 分布 分布 分布 分位數 正態總體的常用抽樣分布
考試要求
1.理解總體、簡單隨機樣本、統計量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為:
2.了解 分布、 分布和 分布的概念及性質,了解上側 分位數的概念并會查表計算。
3.了解正態總體的常用抽樣分布。
七、參數估計
考試內容
點估計的概念 估計量與估計值 矩估計法 最大似然估計法 估計量的評選標準 區間估計的概念 單個正態總體的均值和方差的區間估計 兩個正態總體的均值差和方差比的區間估計
考試要求
1.理解參數的點估計、估計量與估計值的概念。
2.掌握矩估計法(一階矩、二階矩)和最大似然估計法。
3.了解估計量的無偏性、有效性(最小方差性)和一致性(相合性)的概念,并會驗證估計量的無偏性。
4、理解區間估計的概念,會求單個正態總體的均值和方差的置信區間,會求兩個正態總體的均值差和方差比的置信區間。
八、假設檢驗
考試內容
顯著性檢驗 假設檢驗的兩類錯誤 單個及兩個正態總體的均值和方差的假設檢驗
考試要求
1.理解顯著性檢驗的基本思想,掌握假設檢驗的基本步驟,了解假設檢驗可能產生的兩類錯誤。
2.掌握單個及兩個正態總體的均值和方差的假設檢驗。
以上信息可能存在個別遺漏,歡迎下載2014年考研數學一大綱完整電子版,請點擊以下附件